If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+150t+144=0
a = -16; b = 150; c = +144;
Δ = b2-4ac
Δ = 1502-4·(-16)·144
Δ = 31716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31716}=\sqrt{36*881}=\sqrt{36}*\sqrt{881}=6\sqrt{881}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-6\sqrt{881}}{2*-16}=\frac{-150-6\sqrt{881}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+6\sqrt{881}}{2*-16}=\frac{-150+6\sqrt{881}}{-32} $
| 6(x+6)-5x=3+x-29 | | 5/2=-2+2/x+3 | | 10x=8=12x-26 | | 8-6y=-10-8y | | 5(2x-3)=2(x-5) | | 2/(x+3)-2=5/2 | | -4m=-3+4 | | 3/4=m | | -6+b-4=-2+2b | | -x=67 | | -7-6g=g | | H(x)=48 | | 5-4c=-10-c | | u/2-14=11 | | 5+9u=-2+10u | | u/2-14= | | -f=8f+9 | | 5v+15=60 | | 4(b+4)+b=4(b-3)-1 | | y-5=-2y+4 | | 12.5=0.75x+1.25 | | 6x+(3x+20)=180 | | 45x+30=35x+90 | | 23=y/4-12 | | 8/(x+3)=2/x | | (3x)+(9x+12)=180 | | 26=3y-13 | | 5x/9+4=2 | | (10p-3)^1/3-(4p+9)^1/3=0 | | 9n+4=10n | | 2,5x=250 | | -7x-8=36 |